Coupling of dielectric mixing models with full-wave ground-penetrating radar signal inversion for sandy-soil-moisture estimation

Author:

Tran Anh Phuong1,Ardekani Mohammad Reza Mahmoudzadeh1,Lambot Sébastien1

Affiliation:

1. Université Catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve, Belgium..

Abstract

We coupled dielectric mixing models with a full-wave ground-penetrating-radar (GPR) model to estimate the soil water content by inversion. Two mixing models were taken into account in this study, namely, a power law model and the Wang and Schmugge model. With this combination, we could account for the frequency dependence of the dielectric permittivity and apparent conductivity in the inverse algorithm and directly estimate the soil water content without using an empirical petrophysical formula or a priori knowledge on soil porosity. The approach was validated by a series of experiments with sandy soil in controlled laboratory conditions. The results showed that the performance of our approach is better than the common approach, which assumes a linear dependence of apparent conductivity on frequency and uses Topp’s equation to transform permittivity to water content. GPR data were perfectly reproduced in the time and frequency domains, leading to very accurate water-content estimates with an average absolute error of less than [Formula: see text]. However, the accuracy was reduced as the water content increased. Sensitivity analysis indicated that the Green’s function was most sensitive to the water content and sand-layer thickness but much less so with DC conductivity. The results also revealed that as the frequency increased, although the permittivity was nearly constant, the apparent electrical conductivity and the attenuation increased remarkably, especially for wet sands due to dielectric losses. The successful validation of the proposed approach opens a promising avenue of development to use dielectric mixing models for soil-moisture mapping from GPR measurements.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3