Exploitation of data-information content in elastic-waveform inversions

Author:

Manukyan Edgar12345,Latzel Sabine12345,Maurer Hansruedi12345,Marelli Stefano12345,Greenhalgh Stewart A.12345

Affiliation:

1. Institute of Geophysics, ETH Zurich, Switzerland and Fugro-Jason Netherlands BV, Netherlands..

2. Institute of Geophysics, ETH Zurich, Switzerland and Carl Zeiss Vision International GmbH, Germany..

3. Institute of Geophysics, ETH Zurich, Switzerland..

4. Institute of Geophysics, ETH Zurich, Switzerland and University of Lausanne, Switzerland..

5. Institute of Geophysics, ETH Zurich, Switzerland and University of Adelaide, Department of Physics, Australia..

Abstract

Elastic-waveform inversions have the potential to provide detailed subsurface images of the elastic parameters (P- and S-wave velocities and density), but acquisition of suitable data sets and their inversion are nontrivial tasks. We explore the information content offered by elastic-waveform data by means of a 2D synthetic study. Comprehensive noise-free data sets that include recordings based on multicomponent (directed) sources and multicomponent (vector) receivers that fully surround the area of interest allow all elastic parameters to be reliably recovered. Results that are almost as good can be achieved with the more commonly used crosshole configuration. If only single-source components (e.g., those oriented perpendicular to the borehole walls) are used, then there is no significant quality degradation of the tomographic images. Crosshole experiments that include pressure sources and multicomponent receivers still allow P- and S-wave velocities to be recovered, but such data sets contain virtually no information about the density. Finally, seismic data collected with omnidirectional pressure sources and pressure receivers contain information about P- and S-wave velocities, but there are pronounced trade-offs between these parameters. This is demonstrated through formal model-resolution analyses. This study concludes that seismic data recorded with pressure sources and 2C receivers offer the best compromise between acquisition efficiency and data-information content.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3