Azimuth-preserved local angle-domain prestack time migration in isotropic, vertical transversely isotropic and azimuthally anisotropic media

Author:

Cheng Jiubing12,Wang Tengfei12,Wang Chenlong12,Geng Jianhua12

Affiliation:

1. Tongji University, School of Ocean and Earth Science, State Key Laboratory of Marine Geology, Shanghai, China,.

2. Tongji University, School of Ocean and Earth Science, Shanghai, China,.

Abstract

Conventional prestack migration does not preserve local directional information of the seismic waves at the image points. New attempts such as sectored migration of azimuth-limited or common-offset-vector data only concern source-receiver azimuth and offset on the surface, which can be poor representation of subsurface wavepath direction. Moreover, they could result in inaccurate imaging because they do not account for the energy propagation between azimuths or offset-vectors. In the past decade, local angle-domain seismic imaging has been highly advocated to avoid migration artifacts and to improve velocity estimation in complex media. Considering prestack time migration (PSTM) is still widely used in seismic imaging and seismic data preconditioning for amplitude variations with offset or incident-angle (AVO/AVA) analysis, fracture detection, and reservoir characterization, we present an azimuth-preserved local angle-domain Kirchhoff PSTM approach for such purposes. We apply a seismic imaging condition in 3D local angle domain and use extended superposition of impulse responses retaining subsurface angular attributes, which are evaluated through the incident and scattering phase slowness vectors using classical-diffraction moveout equations in isotropic, vertical transversely isotropic (VTI) and azimuthally anisotropic media. Two-dimensional synthetic examples demonstrate what the migrated results look like in local angle domain. A wide-azimuth synthetic example with horizontal transversely isotropy (HTI) proves the necessity of azimuthal migration for reliable imaging and azimuthal analysis when azimuthal anisotropy exists in the overburden. Real data examples show the advantages of imaging in subsurface angle domain for properly focusing and revealing azimuth- and angle-dependent variations of residual moveout and migrated amplitudes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3