AVO inversion and poroelasticity with P- and S-wave moduli

Author:

Zong Zhaoyun1,Yin Xingyao1,Wu Guochen1

Affiliation:

1. China University of Petroleum, Qingdao, Shandong, China..

Abstract

The fluid term in the Biot-Gassmann equation plays an important role in reservoir fluid discrimination. The density term imbedded in the fluid term, however, is difficult to estimate because it is less sensitive to seismic amplitude variations. We combined poroelasticity theory, amplitude variation with offset (AVO) inversion, and identification of P- and S-wave moduli to present a stable and physically meaningful method to estimate the fluid term, with no need for density information from prestack seismic data. We used poroelasticity theory to express the fluid term as a function of P- and S-wave moduli. The use of P- and S-wave moduli made the derivation physically meaningful and natural. Then we derived an AVO approximation in terms of these moduli, which can then be directly inverted from seismic data. Furthermore, this practical and robust AVO-inversion technique was developed in a Bayesian framework. The objective was to obtain the maximum a posteriori solution for the P-wave modulus, S-wave modulus, and density. Gaussian and Cauchy distributions were used for the likelihood and a priori probability distributions, respectively. The introduction of a low-frequency constraint and statistical probability information to the objective function rendered the inversion more stable and less sensitive to the initial model. Tests on synthetic data showed that all the parameters can be estimated well when no noise is present and the estimated P- and S-wave moduli were still reasonable with moderate noise and rather smooth initial model parameters. A test on a real data set showed that the estimated fluid term was in good agreement with the results of drilling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3