A new empirical complex electrical resistivity model

Author:

Kavian M.1,Slob E. C.1,Mulder W. A.2

Affiliation:

1. Delft University of Technology, Department of Geotechnology, Section of Applied Geophysics and Petrophysics, Delft, The Netherlands..

2. Delft University of Technology, Department of Geoscience and Engineering, Section of Applied Geophysics and Petrophysics, Delft, The Netherlands; Shell Global Solutions International BV, Rijswijk, The Netherlands.

Abstract

Macroscopic measurements of electrical resistivity require frequency-dependent effective models that honor the microscopic effects observable in macroscopic measurements. Effective models based on microscopic physics exist alongside with empirical models. We adopted an empirical model approach to modify an existing physical model. This provided a description of electrical resistivity as a function of not only frequency, but also water saturation. We performed two-electrode laboratory measurements of the complex resistivity on a number of fine and medium-grained unconsolidated sand packs saturated with water of three different salinities. For frequencies between 0.1 and 1 MHz, the data were fitted with the new model and compared to fits with Archie’s law. Our model described the relaxation times and DC resistivity values as negative exponential functions with increasing water saturation. All data could be accurately described as a function of frequency and water saturation with nine parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3