Random noise attenuation using f-x regularized nonstationary autoregression

Author:

Liu Guochang12,Chen Xiaohong12,Du Jing12,Wu Kailong12

Affiliation:

1. China University of Petroleum (Beijing), National Engineering Laboratory for Offshore Oil Exploration, Beijing, China..

2. China Petroleum & Chemical Corporation, Shengli Geophysical Research Institute, China..

Abstract

We have developed a novel method for random noise attenuation in seismic data by applying regularized nonstationary autoregression (RNA) in the frequency-space ([Formula: see text]) domain. The method adaptively predicts the signal with spatial changes in dip or amplitude using [Formula: see text] RNA. The key idea is to overcome the assumption of linearity and stationarity of the signal in conventional [Formula: see text] domain prediction technique. The conventional [Formula: see text] domain prediction technique uses short temporal and spatial analysis windows to cope with the nonstationary of the seismic data. The new method does not require windowing strategies in spatial direction. We implement the algorithm by an iterated scheme using the conjugate-gradient method. We constrain the coefficients of nonstationary autoregression (NA) to be smooth along space and frequency in the [Formula: see text] domain. The shaping regularization in least-square inversion controls the smoothness of the coefficients of [Formula: see text] RNA. There are two key parameters in the proposed method: filter length and radius of shaping operator. Tests on synthetic and field data examples showed that, compared with [Formula: see text] domain and time-space domain prediction methods, [Formula: see text] RNA can be more effective in suppressing random noise and preserving the signals, especially for complex geological structure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3