Analytic study of the effective parameters for determination of the NMO velocity function in transversely isotropic media

Author:

Cohen Jack K.1

Affiliation:

1. Center for Wave Phenomena, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado 80401-1887

Abstract

In their studies of transversely isotropic media with a vertical symmetry axis (VTI media), Alkhalifah and Tsvankin observed that, to a high numerical accuracy, the normal moveout (NMO) velocity for dipping reflectors as a function of ray parameter p depends mainly on just two parameters, each of which can be determined from surface P‐wave observations. They substantiated this result by using the weak‐anisotropy approximation and exploited it to develop a time‐domain processing sequence that takes into account vertical transverse isotropy. In this study, the two‐parameter Alkhalifah‐Tsvankin result was further examined analytically. It was found that although there is (as these authors already observed) some dependence on the remaining parameters of the problem, this dependence is weak, especially in the practically important regimes of weak to moderately strong transverse isotropy and small ray parameter. In each of these regimes, an analytic solution is derived for the anisotropy parameter η required for time‐domain P‐wave imaging in VTI media. In the case of elliptical anisotropy (η = 0), NMO velocity expressed through p is fully controlled just by the zero‐dip NMO velocity—one of the Alkhalifah‐ Tsvankin parameters. The two‐parameter representation of NMO velocity also was shown to be exact in another limit—that of the zero shear‐wave vertical velociy. The analytic results derived here are based on new representations for both the P‐wave phase velocity and normal moveout velocity in terms of the ray parameter, with explicit expressions given for the cases of vanishing onaxis shear speed, weak to moderate transverse isotropy, and small to moderate ray parameter. Using these formulas, I have rederived and, in some cases, extended in a uniform manner various results of Tsvankin, Alkhalifah, and others. Examples include second‐order expansions in the anisotropy parameters for both the P‐wave phase‐velocity function and NMO‐velocity function, as well as expansions in powers of the ray parameter for both of these functions. I have checked these expansions against the corresponding exact functions for several choices of the anisotropy parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximate decoupled wave equations for elastic waves in TTI media;CHINESE J GEOPHYS-CH;2021

2. Three-dimensional angle-domain double-square-root migration in VTI media for the large-scale wide-azimuth seismic data;Acta Geophysica;2020-06-01

3. Viscoacoustic anisotropic full waveform inversion;Journal of Applied Geophysics;2017-01

4. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Third edition;GEOPHYS REF;2012-01-01

5. References;Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Third edition;2012-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3