Velocity inversion by global optimization using finite-offset common-reflection-surface stacking applied to synthetic and Tacutu Basin seismic data

Author:

Mesquita Marcelo Jorge Luz1ORCID,Cruz João Carlos Ribeiro1ORCID,Callapino German Garabito2ORCID

Affiliation:

1. Federal University of Pará, Institute of Geosciences, Geophysical Graduate Course, Rua Augusto Corrêa, 01 — Guamá, Belem, CEP: 66075-110, Brazil.(corresponding author).

2. Federal University of Rio Grande do Norte, Department of Petroleum Engineering, Av. Sen. Salgado Filho, 3000 — Lagoa Nova Natal — RN, Natal 59078-970, Brazil..

Abstract

Estimation of an accurate velocity macromodel is an important step in seismic imaging. We have developed an approach based on coherence measurements and finite-offset (FO) beam stacking. The algorithm is an FO common-reflection-surface tomography, which aims to determine the best layered depth-velocity model by finding the model that maximizes a semblance objective function calculated from the amplitudes in common-midpoint (CMP) gathers stacked over a predetermined aperture. We develop the subsurface velocity model with a stack of layers separated by smooth interfaces. The algorithm is applied layer by layer from the top downward in four steps per layer. First, by automatic or manual picking, we estimate the reflection times of events that describe the interfaces in a time-migrated section. Second, we convert these times to depth using the velocity model via application of Dix’s formula and the image rays to the events. Third, by using ray tracing, we calculate kinematic parameters along the central ray and build a paraxial FO traveltime approximation for the FO common-reflection-surface method. Finally, starting from CMP gathers, we calculate the semblance of the selected events using this paraxial traveltime approximation. After repeating this algorithm for all selected CMP gathers, we use the mean semblance values as an objective function for the target layer. When this coherence measure is maximized, the model is accepted and the process is completed. Otherwise, the process restarts from step two with the updated velocity model. Because the inverse problem we are solving is nonlinear, we use very fast simulated annealing to search the velocity parameters in the target layers. We test the method on synthetic and real data sets to study its use and advantages.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3