Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model

Author:

Yuan Sanyi1ORCID,Wang Shangxu1ORCID,Luo Yaneng2ORCID,Wei Wanwan1,Wang Guanchao1ORCID

Affiliation:

1. China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, Changping 102249, Beijing, China..

2. China University of Petroleum, Unconventional Natural Gas Research Institute, Changping 102249, Beijing, China..

Abstract

Prestack acoustic full-waveform inversion (FWI) can provide long-wavelength components of the P-wave velocity by using low frequencies and long-offset direct/diving/refracted waves, which could be simulated via a large space grid, and it is weakly sensitive to density. Poststack impedance inversion can usually quickly yield high-resolution impedance, and it is sensitive to density. Therefore, we have combined these two methods to develop an FWI-driven impedance inversion. Our method first uses FWI to obtain the long-wavelength velocity with a guaranteed overlap between the high frequencies of the velocity and the low frequencies of the poststack data. Then, the fitting rock-physics relationship between the density and the velocity is adopted to translate the FWI velocity into the low-frequency impedance. Finally, the resulting low-frequency impedance is used to construct an a priori constraint for poststack impedance inversion. The method has the ability to solve the overlap between the FWI-based converted prior impedance model and poststack data, and it can thereby yield a broadband absolute impedance result. We adopt a Marmousi II model example and a real data case to test the performances of the FWI-driven impedance inversion and indicate its advantages compared with the conventional well-driven impedance inversion that uses well logs and interpreted horizons to build the prior impedance model. The synthetic data example demonstrates that well-driven impedance inversion produces a result with a relatively large deviation to the true impedance model at complex structure zones. However, FWI-driven impedance inversion favorably recovers all interesting sediment layers at complex structure zones. The real data example illustrates that well-driven impedance inversion yields a result with a distinct footprint of the prior model created from well logs and horizons. On the other hand, we find that FWI-driven impedance inversion yields a geologically reasonable solution, which not only conforms to the time-space variation trend of the well logs, but it also reveals a basin structural-depositional evolution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3