Accurate diffraction imaging for detecting small-scale geologic discontinuities

Author:

Lin Peng1ORCID,Peng Suping1ORCID,Zhao Jingtao1ORCID,Cui Xiaoqin1ORCID,Du Wenfeng1

Affiliation:

1. China University of Mining & Technology (Beijing), State Key Laboratory of Coal Resources and Safe Mining, Beijing 100083, China..

Abstract

Seismic diffractions contain valuable information regarding small-scale inhomogeneities or discontinuities, and therefore they can be used for seismic interpretation in the exploitation of hydrocarbon reservoirs. Velocity analysis is a necessary step for accurate imaging of these diffractions. A new method for diffraction velocity analysis and imaging is proposed that uses an improved adaptive minimum variance beamforming technique. This method incorporates the minimum variance, coherence factor, and correlation properties to improve the signal-to-noise ratio and enhance correlations. Our method can make seismic diffractions become better focused in semblance panels, allowing for the optimal migration velocity for diffractions to be accurately picked. Synthetic and field examples demonstrate that the migration velocity for the diffractions can differ from that for the reflections. The results suggest that the diffraction velocity analysis and imaging method is feasible for accurately locating and identifying small-scale discontinuities, which leads to the possibility of using this approach for practical application and seismic interpretation.

Funder

National Key Research and Development Program

National Science Technology Major Project

Coal United Project of National Natural Science Foundation

Shanxi Natural Science Funds Project

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3