Multichannel band-controlled deconvolution based on a data-driven structural regularization

Author:

Du Xin1ORCID,Li Guofa1ORCID,Zhang Mo2,Li Hao1,Yang Wuyang3,Wang Wanli3

Affiliation:

1. China University of Petroleum-Beijing, CNPC Key Lab of Geophysical Exploration, State Key Laboratory of Petroleum Resource and Prospecting, Beijing, China..

2. Peking University, Academy for Advanced Interdisciplinary Studies, Beijing, China..

3. Research Institute of Petroleum Exploration & Development-northwest, PetroChina, Lanzhou, China..

Abstract

Sparse deconvolution methods frequently invert for subsurface reflection impulses and adopt a trace-by-trace processing pattern. However, following this approach causes unreliability of the estimated reflectivity due to the nonuniqueness of the inverse problem, the poor spatial continuity of structures in the reconstructed reflectivity section, and the suppression on the reflection signals with small amplitudes. We have developed a structurally constrained multichannel band-controlled deconvolution (SC-MBCD) algorithm to alleviate these three issues. The algorithm inverts for a high-resolution seismogram rather than the full-band reflectivity series, thereby reducing the multiple solutions in the inversion and enhancing the reliability of processing results. We also exploited a structural constraint term to guarantee the spatial continuity of the structures, and we enhanced the relatively weak signals. The reflection structure characteristics, defined and extracted from the observed stacked seismic data, are the core of the structural regularization item. We solved the cost function of the SC-MBCD by the alternating direction method of multipliers algorithm. Synthetic model and field data examples demonstrate the rationality of SC-MBCD and confirmed that the algorithm can provide a better inversion result than the conventional sparse spike inversion in terms of retrieving weak reflection events and guaranteeing stratal continuities.

Funder

National Natural Science Foundation of China

China National Petroleum Corporation

Major National Science and Technology Projects

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3