Deep-learning-based seismic data interpolation: A preliminary result

Author:

Wang Benfeng1ORCID,Zhang Ning2,Lu Wenkai2ORCID,Wang Jialin2

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Institute for Advanced Study, Shanghai 200092, China and Tsinghua University, Easysignal Group, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Beijing 100084, China..

2. Tsinghua University, Easysignal Group, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Beijing 100084, China..

Abstract

Seismic data interpolation is a longstanding issue. Most current methods are only suitable for randomly missing cases. To deal with regularly missing cases, an antialiasing strategy should be included. However, seismic survey design using a random distribution of shots and receivers is always operationally challenging and impractical. We have used deep-learning-based approaches for seismic data antialiasing interpolation, which could extract deeper features of the training data in a nonlinear way by self-learning. It can also avoid linear events, sparsity, and low-rank assumptions of the traditional interpolation methods. Based on convolutional neural networks, eight-layers residual learning networks (ResNets) with a better back-propagation property for deep layers is designed for interpolation. Detailed training analysis is also performed. A set of simulated data is used to train the designed ResNets. The performance is assessed with several synthetic and field data. Numerical examples indicate that the trained ResNets can help to reconstruct regularly missing traces with high accuracy. The interpolated results in the time-space domain and the frequency-wavenumber ([Formula: see text]-[Formula: see text]) domain demonstrate the validity of the trained ResNets. Even though the accuracy decreases with the increase of the feature difference between the test and training data, the proposed method can still provide reasonable interpolation results. Finally, the trained ResNets is used to reconstruct dense data with halved trace intervals for synthetic and field data. The reconstructed dense data are more continuous along the spatial direction, and the spatial aliasing effects disappear in the [Formula: see text]-[Formula: see text] domain. The reconstructed dense data have the potential to improve the accuracy of subsequent seismic data processing and inversion.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Key State Science Technology Project

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 235 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3