A self-potential investigation of submarine massive sulfides: Palinuro Seamount, Tyrrhenian Sea

Author:

Safipour Roxana1ORCID,Hölz Sebastian2,Halbach Jesse1,Jegen Marion2ORCID,Petersen Sven2,Swidinsky Andrei1ORCID

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

2. GEOMAR, Helmholtz Centre for Ocean Research, Geodynamics Department, Kiel, Germany..

Abstract

The self-potential (SP) method detects naturally occurring electric fields, which may be produced by electrically conductive mineral deposits, such as massive sulfides. Recently, there has been increasing interest in applying this method in a marine environment to explore for seafloor massive sulfide (SMS) deposits, which may contain economic resources of base and precious metals. Although SMS sites that are associated with active venting and are not buried under sediment cover are known to produce an SP signal, the effectiveness of the method at detecting inactive and sediment-covered deposits remained an outstanding question. We built an instrument capable of recording SP data in a marine setting. We carried out a test of the instrument at the Palinuro Seamount in the Tyrrhenian Sea. Palinuro is one of only a few known sites containing an SMS occurrence that is buried under sediment and not associated with active hydrothermal venting, although diffuse seepage of hydrothermal fluids is known to occur at the site. Elevated electric field strengths recorded in and near the site of previously drilled massive sulfide samples are on the order of [Formula: see text]. A second zone of high field strengths was detected to the north of the drilling area where gravity coring later confirmed the existence of massive sulfides. Our observations indicate that an SP signal can be observed at the site of SMS mineralization even when the mineralized zone is shallowly buried and active hydrothermal venting is not present. These observations could aid in the planning of future marine research expeditions that use the SP method in the exploration of seafloor massive sulfides.

Funder

Blue Mining project

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3