Least-squares horizons with local slopes and multigrid correlations

Author:

Wu Xinming1ORCID,Fomel Sergey1ORCID

Affiliation:

1. The University of Texas at Austin, Bureau of Economic Geology, Austin, Texas, USA..

Abstract

Most seismic horizon extraction methods are based on seismic local reflection slopes that locally follow seismic structural features. However, these methods often fail to correctly track horizons across discontinuities such as faults and noise because the local slopes can only correctly follow laterally continuous reflections. In addition, seismic amplitude or phase information is not used in these methods to compute horizons that follow a consistent phase (e.g., peaks or troughs). To solve these problems, we have developed a novel method to compute horizons that globally fit the local slopes and multigrid correlations of seismic traces. In this method, we first estimate local reflection slopes by using structure tensors and compute laterally multigrid slopes by using dynamic time warping (DTW) to correlate seismic traces within multiple laterally coarse grids. These coarse-grid slopes can correctly correlate reflections that may be significantly dislocated by faults or other discontinuous structures. Then, we compute a horizon by fitting, in the least-squares sense, the slopes of the horizon with the local reflection slopes and multigrid slopes or correlations computed by DTW. In this least-squares system, the local slopes on the fine grid and the multiple coarse-grid slopes will fit a consistent horizon in areas without lateral discontinuities. Across laterally discontinuous areas where the local slopes fail to correctly correlate reflections and mislead the horizon extraction, the coarse-grid slopes will help to find the corresponding reflections and correct the horizon extraction. In addition, the multigrid correlations or slopes computed by dynamic warping can also assist in computing phase-consistent horizons. We apply the proposed horizon extraction method to multiple 2D and 3D examples and obtain accurate horizons that follow consistent phases and correctly track reflections across faults.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference43 articles.

1. Arias, E., 2016, Estimating seismic reflection slopes: Master’s thesis, Colorado School of Mines.

2. Bakker, P., 2002, Image structure analysis for seismic interpretation: Ph.D. thesis, Delft University of Technology.

3. Bakker, P., L. J. van Vliet, and P. W. Verbeek, 1999, Edge preserving orientation adaptive filtering: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

4. Fast structural interpretation with structure‐oriented filtering

5. Seismic horizon mapping across faults with Growing Neural Gas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3