First application of the marine differential electric dipole for groundwater investigations: A case study from Bat Yam, Israel

Author:

Haroon Amir1ORCID,Lippert Klaus2,Mogilatov Vladimir3,Tezkan Bülent2

Affiliation:

1. Formerly University of Cologne, Institute of Geophysics and Meteorology, Cologne, Germany; presently Helmholtz Centre for Ocean Research, GEOMAR, Kiel, Germany..

2. University of Cologne, Institute of Geophysics and Meteorology, Cologne, Germany..

3. Trofimuk Institute of Petroleum-Gas Geology and Geophysics, Russian Academy of Sciences, Moskva, Russia and Novosibirsk State University, Novosibirsk, Russia..

Abstract

The marine differential electric dipole (DED) is applied for the first time to study a subseafloor groundwater body in the coastal region of Bat Yam, Israel. Previous marine long-offset transient electromagnetic applications detected this freshwater body underneath the Mediterranean seafloor. We have applied the novel DED method for the first time in the marine environment to further investigate this natural phenomenon. The main objectives are to locate the freshwater-seawater interface at the western aquifer edge and to identify the mechanism controlling this freshwater occurrence beneath the seafloor. The acquired step-on signals allow one to detect the freshwater body in the vicinity of the Israeli coastline at a depth of approximately 70 m beneath the seafloor. However, aquifer thickness is only poorly determined and may vary between 40 and 100 m. A lateral resistivity contrast is observable between adjacent 1D inversion models and also apparent in data profile curves that constrain the seaward extent of the detected resistive body to a distance of less than 4 km from the coastline. A subsequent 2.5D forward-modeling study aims to find a subseafloor resistivity distribution that adequately explains all measured DED data simultaneously. The results further constrain the lateral extent of the resistive aquifer to approximately 3.6–3.7 km from the Israeli coast. Furthermore, the data indicate that the aquifer system may be susceptible to seawater intrusion, as a superior data fit is achieved if a brackish water zone of approximately [Formula: see text] with a lateral extent of less than 300 m is located at the head of the freshwater body.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3