A data-driven amplitude variation with offset inversion method via learned dictionaries and sparse representation

Author:

She Bin1ORCID,Wang Yaojun2ORCID,Liang Jiandong3,Liu Zhining1ORCID,Song Chengyun4ORCID,Hu Guangmin2

Affiliation:

1. University of Electronic Science and Technology of China, School of Information and Communication Engineering, Center for Information Geoscience, Chengdu, China..

2. University of Electronic Science and Technology of China, School of Resources and Environments, Center for Information Geoscience, Chengdu, China.(Corresponding author).

3. China National Petroleum Corporation, Bureau of Geophysical Prospecting, Zhuozhou, China..

4. Chongqing University of Technology, School of Computer Science and Engineering, Chongqing, China..

Abstract

Amplitude variation with offset (AVO) inversion is a typical ill-posed inverse problem. To obtain a stable and unique solution, regularization techniques relying on mathematical models from prior information are commonly used in conventional AVO inversion methods (hence the name model-driven methods). Due to the difference between prior information and the actual geology, these methods often have difficulty achieving satisfactory accuracy and resolution. We have developed a novel data-driven inversion method for the AVO inversion problem. This method can effectively extract useful knowledge from well-log data, including sparse dictionaries of elastic parameters and sparse representation of subsurface model parameters. Lateral continuity of subsurface geology allows for the approximation of model parameters for a work area using the learned dictionaries. Instead of particular mathematical models, a sparse representation is used to constrain the inverse problem. Because no assumption is made about the model parameters, we consider this a data-driven method. The general process of the algorithm is as follows: (1) using well-log data as the training samples to learn the sparse dictionary of each elastic parameter, (2) imposing a sparse representation constraint on the objective function, making the elastic parameters be sparsely represented over the learned dictionary, and (3) solving the objective function by applying a coordinate-descent algorithm. Tests on several synthetic examples and field data demonstrate that our algorithm is effective in improving the resolution and accuracy of solutions and is adaptable to various geologies.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3