An airborne electromagnetic system with a three-component transmitter and three-component receiver capable of detecting extremely conductive bodies

Author:

Smith Richard S.1ORCID

Affiliation:

1. Laurentian University, Harquail School of Earth Sciences, Sudbury, Ontario P3E 2C6, Canada..

Abstract

Extremely conductive bodies, such as those containing valuable nickel sulfides, have a secondary response that is dominated by an in-phase component, so this secondary response is very difficult to distinguish from the primary field emanating from the transmitter (because by definition they are identical in temporal shape and phase). Hence, an airborne electromagnetic (AEM) system able to identify the response from the extremely conductive bodies in the ground must be able to predict the primary field to identify and measure the secondary response of the extremely conductive body. This is normally done by having a rigid system and bucking out the predicted primary (which will not change significantly due to the rigidity). Unfortunately, these rigid systems must be small and are not capable of detecting extremely conductive bodies buried deeper than approximately 100 m. Another approach is to measure the transmitter current and geometry and subtract the primary mathematically, but these measurements must be extremely accurate and this is difficult or expensive, so it has not been done successfully for an AEM system. I exploit the geometric relationship of the primary fields from a three-component (3C) dipole transmitter. If the transmitter is mathematically rotated so that one axis points to the receiver, then linear combinations of the fields measured by a 3C receiver can be combined in such a way that the primary fields from the transmitter sum to zero and cancel. Alternatively, the measured transmitter current and response could be used to estimate the transmitter-receiver geometry and then to predict and remove the primary field. Any residual must be the secondary coming from a conductive body in the ground. Hence, extremely conductive bodies containing valuable minerals can be found. An AEM system with a 3C transmitter and a 3C receiver should not be too difficult to build.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference39 articles.

1. Development of the Prospect I Airborne ElectroMagnetic System

2. Geological Association of Canada Short Course Notes;Balch S. J.,1999

3. The Sweepem Airborne Electromagnetic System

4. Unexploded ordnance discrimination using magnetic and electromagnetic sensors: Case study from a former military site

5. Cartier, W. O., G. H. McLaughlin, W. A. Robinson, and E. M. Wise, 1952, System of airborne conductor measurements: U.S. Patent 2,623,924.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3