The dynamically correct Poynting vector formulation for acoustic media with application in calculating multidirectional propagation vectors to produce angle gathers from reverse time migration

Author:

Tang Chen1ORCID,McMechan George A.1ORCID

Affiliation:

1. University of Texas at Dallas, Center for Lithospheric Studies, 800 W Campbell Rd (ROC 21), Richardson, Texas 75080, USA..

Abstract

The Poynting vector (PV) has been widely used to calculate propagation vectors of a pressure field (PF) in acoustic media. The most widely used acoustic PV formula is the negative of a product of the time and space derivatives. These two derivatives result in a phase shift between the PF and its PV; particularly, for a PF at a local magnitude peak, the PV modulus is zero and thus the propagation direction there is undefined. This “zero-modulus” issue is not consistent with the physical definition of the PV, which is the directional energy flux density of a PF because this definition indicates that the variation of the PV modulus should be consistent with the PF magnitude. This PV is only considered as kinematically correct and defined as K-PV. We derive the dynamically correct PV (D-PV) formula for acoustic media, which is the negative of the product of the reciprocal of the density, the PF itself, and a factor that is obtained by applying a time integration and a space derivative to the PF. There are two derivations. One uses the slowness vector, and the other is by simplifying the elastic PV. This D-PV does not suffer from the zero-modulus problem, and we also use it to update the multidirectional PV (MPV), which produces a D-MPV. Two strategies are provided to reduce the computational complexity of the time integration in the D-PV formula. Because the MPV already involves Fourier transforms between the time and frequency domains (which facilitates implementation of the time integration), its updated version causes only a very minor increase in the computational complexity of the original one. Numerical examples indicate that the D-PV provides more reliable propagation vectors than the K-PV, and the D-MPV provides more accurate angle-domain common-image gathers from reverse time migration of acoustic media than the K-MPV.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3