Extraction of reflected events from sonic-log waveforms using the Karhunen-Loève transform

Author:

Li Junxiao1ORCID,Innanen Kristopher A.1ORCID,Tao Guo2ORCID

Affiliation:

1. University of Calgary, Department of Geoscience, CREWES Project, Calgary, Canada..

2. The Petroleum Institute, Department of Petroleum Geoscience, Abu Dhabi, UAE..

Abstract

Sonic-reflection logging, a recently developed borehole geophysical scheme, is in principle capable of providing a clear view of outside the well bore. In this type of acoustic well logging, a key technical obstacle is that the reflected wave signal is almost entirely obscured by the directly arriving P-, S-, and Stoneley wave modes. Effective extraction of these reflection signals from the full acoustic waveforms is therefore a critical data-processing step. We have examined the use of the Karhunen-Loève (KL) transform, combined with a band-limiting filter, as a technique for the extraction of reflections of interest from a mixture with directly arriving wave modes of much higher amplitude. Under the assumption that large energy (squared-amplitude) differences exist between each wave component, the direct Stoneley wave, S-wave, and the P-wave are eliminated sequentially by subtracting the most significant principal components, after which the remaining signal is seen to be dominated by reflected events. Thereafter, the extracted reflections can be used in migration to provide interpretable images of the structures outside the borehole. Synthetic data are used to develop and justify our procedure for subtraction of appropriate KL principal components. Laboratory data are used to demonstrate in detail the suppression of unwanted modes. For comparison, the multiscale slowness-time-coherence method is applied to extract reflections from the same data set. The procedure is exemplified on a field data case with attention paid in particular to the consequences to imaging of near-borehole structures.

Funder

CREWES industrial sponsors and NSERC

NSFC

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3