Model-order reduction of electromagnetic fields in open domains

Author:

Zimmerling Jörn1ORCID,Druskin Vladimir2,Zaslavsky Mikhail2,Remis Rob F.1

Affiliation:

1. Delft University of Technology, Delft, The Netherlands..

2. Schlumberger-Doll Research, Cambridge, Massachusetts, USA..

Abstract

We have developed several Krylov projection-based model-order reduction techniques to simulate electromagnetic wave propagation and diffusion in unbounded domains. Such techniques can be used to efficiently approximate transfer function field responses between a given set of sources and receivers and allow for fast and memory-efficient computation of Jacobians, thereby lowering the computational burden associated with inverse scattering problems. We found how general wavefield principles such as reciprocity, passivity, and the Schwarz reflection principle translate from the analytical to the numerical domain and developed polynomial, extended, and rational Krylov model-order reduction techniques that preserve these structures. Furthermore, we found that the symmetry of the Maxwell equations allows for projection onto polynomial and extended Krylov subspaces without saving a complete basis. In particular, short-term recurrence relations can be used to construct reduced-order models that are as memory efficient as time-stepping algorithms. In addition, we evaluated the differences between Krylov reduced-order methods for the full wave and diffusive Maxwell equations and we developed numerical examples to highlight the advantages and disadvantages of the discussed methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3