True amplitude recovery in reverse time extrapolation of plane and spherical waves

Author:

Wu Yulang1ORCID,McMechan George A.1ORCID

Affiliation:

1. University of Texas at Dallas, Center for Lithospheric Studies, Richardson, Texas, USA..

Abstract

A challenging outstanding problem in reverse time extrapolation is recovering accurate amplitudes at reflectors from the receiver wavefield. Various migrations have been developed to produce accurate image locations rather than correct amplitude information because of inadequate compensation of attenuation, dispersion, and transmission losses. We have evaluated the requirements, and determined the theoretical feasibility, of true amplitude recovery of 2D acoustic and elastic seismic data by using the analytic Zoeppritz equations for plane-wave reflection and transmission coefficients. Then, we used synthetic acoustic and elastic wavefield data generated by elastodynamic finite differences to verify the recovery, in the reverse time propagation, of spherical waves and illustrated the salient differences between the incident wavefields reconstructed from reflection data only and from the combination of reflection and transmission data. These examples quantitatively verify that recovering an incident plane or a spherical wave requires the reverse time propagation of all reflections and transmissions in a model with the correct velocity and density. Accurate reconstruction of an incident wave is not possible by backward propagation of only reflections. As an application, we removed downgoing internal multiple reflections generated by upgoing waves incident at reflectors shallower than a horizontal well, in which geophones are deployed. The subtraction of the downgoing reflection involves wavefield reconstruction at depths shallower than the horizontal well and separation of upgoing and downgoing wavefields. This approach assumes that the correct acoustic (or elastic) velocity and density models are available in, and shallower than, the layer where the horizontal well is located. Incident-wave reconstruction works equally well for smooth models, as for models with sharp boundaries. Uncertainties in the model used for reconstruction, and incompleteness of the data aperture are propagated into the equivalent uncertainties, and incompleteness of the reconstruction.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3