Experimental testing of semirigid corrugated baffles for the suppression of tube waves in vertical seismic profile data

Author:

Greenwood Andrew1ORCID,Christian Dupuis J.2,Kepic Anton3,Urosevic Milovan3ORCID

Affiliation:

1. Université of Lausanne, Institut des sciences de la Terre, Lausanne, Switzerland.(corresponding author).

2. Université Laval, Department of Geology and Geological Engineering, Québec, Canada..

3. Curtin University, Department of Exploration Geophysics, Perth, Australia..

Abstract

Multichannel borehole hydrophone strings are a low-cost, low-risk, alternative to borehole clamping geophones. Vertical seismic profile (VSP) data collected with hydrophones, however, suffer from high-amplitude coherent tube-wave noise. This reduces the usable data to the first arrivals and traveltimes for check-shot surveys. To significantly reduce tube-wave noise from VSP data acquired with hydrophones, we have designed and tested a novel tube-wave attenuation baffle. The effectiveness of the baffle was first verified in a laboratory-scale experiment and then in a borehole drilled into a hardrock environment. The laboratory experiments tested the performance of four different baffle topologies, whereby the best performing topology was the semirigid corrugated pipe baffle. This design reduced the amplitude of the tube wave with more than 40 dB and was logistically easy to deploy. The field experiment investigated the effectiveness of three different semirigid corrugated pipe baffle topologies in a PQ (123 mm) diamond drillhole in Western Australia. Here, we found that the semirigid corrugated pipe baffle was effective in disrupting tube-wave propagation. The 100 mm diameter baffle achieved an impressive 60 dB of tube-wave attenuation, whereas the 50 mm baffle had a modest attenuation of 10–15 dB. This suggests that the performance of this new type of baffle is best when the diameter of the baffle is closely matched to the diameter of the borehole. The results of these experiments have significant implications because hydrophone arrays with a large number of receivers are comparatively inexpensive and simpler to deploy than borehole geophone counterparts. The development of hydrophone arrays that are free of interfering borehole modes could allow VSPs to be acquired in situations in which seismic-polarity information is not required and could help VSP gain traction in cases in which the cost of acquisition has precluded its use until now.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference37 articles.

1. Fracture compliance estimation using borehole tube waves

2. Detection of open fractures with vertical seismic profiling

3. Propagation of Elastic Waves in a Cylindrical Bore Containing a Fluid

4. VSP wavefield separation: Wave-by-wave optimization approach

5. Boart-Longyear, 2018, Diamond core drilling reference: Dimensions, weights and volumes metric measurements, http://app.boartlongyear.com/brochures/Reference%202018_2(Web).pdf, accessed 1 February 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3