Analysis of time-lapse data error in complex conductivity imaging to alleviate anthropogenic noise for site characterization

Author:

Flores Orozco Adrian1ORCID,Kemna Andreas2,Binley Andrew3ORCID,Cassiani Giorgio4ORCID

Affiliation:

1. TU-Wien, Department of Geodesy and Geoinformation, Geophysics Research Division, Vienna, Austria.(corresponding author).

2. University of Bonn, Steinmann Institute, Department of Geophysics, Bonn, Germany..

3. Lancaster University, Lancaster Environment Centre, Lancaster, UK..

4. University of Padova, Department of Geosciences, Padova, Italy..

Abstract

Previous studies have demonstrated the potential benefits of the complex conductivity (CC) imaging over electrical resistivity tomography for an improved delineation of hydrocarbon-impacted sites and accompanying biogeochemical processes. However, time-lapse CC field applications are still rare, in particular for measurements performed near anthropogenic structures such as buried pipes or tanks, which are typically present at contaminated sites. To fill this gap, we have developed CC imaging (CCI) results for monitoring data collected in Trecate (northwest Italy), a site impacted by a crude oil spill. Initial imaging results reveal only a poor correlation with seasonal variations of the groundwater table at the site (approximately 6 m). However, it is not clear to which extend such results are affected by anthropogenic structures present at the site. To address this, we performed a detailed analysis of the misfit between direct and reciprocal time-lapse differences. Based on this analysis, we were able to discriminate spatial and temporal sources of systematic errors, with the latter commonly affecting measurements collected near anthropogenic structures. Following our approach, CC images reveal that temporal changes in the electrical properties correlate well with seasonal fluctuations in the groundwater level for areas free of contaminants, whereas contaminated areas exhibit a constant response over time characterized by a relatively high electrical conductivity and a negligible polarization effect. In accordance with a recent mechanistic model, such a response can be explained by the presence of immiscible fluids (oil and air) forming a continuous film through the micro and macropores, hindering the development of ion-selective membranes and membrane polarization. Our results demonstrate the applicability of CCI for an improved characterization of hydrocarbon-contaminated areas, even in areas affected by cultural noise.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3