3D sequential inversion of frequency-domain airborne electromagnetic data to determine conductive and magnetic heterogeneities

Author:

Noh Kyubo1ORCID,Oh Seokmin1ORCID,Seol Soon Jee1ORCID,Byun Joongmoo1ORCID

Affiliation:

1. Hanyang University, RISE (Reservoir Imaging with Seismic & EM Technology) Lab., Seoul, Korea..

Abstract

We have developed two inversion workflows that sequentially invert conductivity and susceptibility models from a frequency-domain controlled-source electromagnetic data set. Both workflows start with conductivity inversion using electromagnetic (EM) kernel and out-of-phase component data, which is mainly sensitive to conductivity, and then we adopt the susceptibility inversion using in-phase component data. The difference between these two workflows is in the susceptibility inversion algorithm: One uses an EM kernel and a conductivity model as the input model; the other uses a magnetostatic kernel and a conductivity model to generate the appropriate input data. Because the appropriate input data for magnetostatic inversion should not contain the EM induction effect, the in-phase induction effect is simulated through the conductivity model obtained by inverting out-of-phase data and subtracting them from observed in-phase data to generate an “induction-subtracted” in-phase data set that becomes input data for magnetostatic inversion. For magnetostatic inversion, we used a linear magnetostatic kernel to enable rapid computation. Then, we applied the two inversion workflows to a field data set of a DIGHEM survey, and we successfully reconstructed the conductivity and susceptibility models from each workflow using two zones within the data sets, in which conductive and susceptible anomalies were present. One important finding is that the susceptibility inversion results obtained from two different workflows are very similar to each other. However, computational time can be significantly saved with linear magnetostatic inversion. We found out how the results of the conductivity and susceptibility models could be well-imaged using a sequential inversion workflow and also how magnetostatic inversion could be used efficiently for airborne EM data inversion.

Funder

Korea Institute of Energy Technology Evaluation Planning

Ministry of Trade Industry & Energy, Republic of Korea

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3