Seismic facies analysis using machine learning

Author:

Wrona Thilo1ORCID,Pan Indranil2,Gawthorpe Robert L.1,Fossen Haakon1

Affiliation:

1. University of Bergen, Department of Earth Science, Allégaten 41, N-5007 Bergen, Norway..

2. Imperial College, Department of Earth Science and Engineering, Prince Consort Road, London SW7 2BP, UK..

Abstract

Seismic interpretations are, by definition, subjective and often require significant time and expertise from the interpreter. We are convinced that machine-learning techniques can help address these problems by performing seismic facies analyses in a rigorous, repeatable way. For this purpose, we use state-of-the-art 3D broadband seismic reflection data of the northern North Sea. Our workflow includes five basic steps. First, we extract seismic attributes to highlight features in the data. Second, we perform a manual seismic facies classification on 10,000 examples. Third, we use some of these examples to train a range of models to predict seismic facies. Fourth, we analyze the performance of these models on the remaining examples. Fifth, we select the “best” model (i.e., highest accuracy) and apply it to a seismic section. As such, we highlight that machine-learning techniques can increase the efficiency of seismic facies analyses.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3