Effect of brine-CO2 fracture flow on velocity and electrical resistivity of naturally fractured tight sandstones

Author:

Nooraiepour Mohammad1ORCID,Bohloli Bahman2,Park Joonsang2,Sauvin Guillaume2,Skurtveit Elin2,Mondol Nazmul Haque3

Affiliation:

1. University of Oslo (UiO), Department of Geosciences, Oslo, Norway..

2. Norwegian Geotechnical Institute (NGI), Oslo, Norway..

3. University of Oslo (UiO), Department of Geosciences, Oslo, Norway and Norwegian Geotechnical Institute (NGI), Oslo, Norway..

Abstract

Fracture networks inside geologic [Formula: see text] storage reservoirs can serve as the primary fluid flow conduit, particularly in low-permeability formations. Although some experiments focus on the geophysical properties of brine- and [Formula: see text]-saturated rocks during matrix flow, geophysical monitoring of fracture flow when [Formula: see text] displaces brine inside the fracture seems to be overlooked. We have conducted laboratory geophysical monitoring of fluid flow in a naturally fractured tight sandstone during brine and liquid [Formula: see text] injection. For the experiment, the low-porosity, low-permeability, naturally fractured core sample from the Triassic De Geerdalen Formation was acquired from the Longyearbyen [Formula: see text] storage pilot at Svalbard, Norway. Stress dependence, hysteresis, and the influence of fluid-rock interactions on fracture permeability were investigated. The results suggest that in addition to stress level and pore pressure, mobility and fluid type can affect fracture permeability during loading and unloading cycles. Moreover, the fluid-rock interaction may impact volumetric strain and consequently fracture permeability through swelling and dry out during water and [Formula: see text] injection, respectively. Acoustic velocity and electrical resistivity were measured continuously in the axial direction and three radial levels. Geophysical monitoring of fracture flow revealed that the axial P-wave velocity and axial electrical resistivity are more sensitive to saturation change than the axial S-wave, radial P-wave, and radial resistivity measurements when [Formula: see text] was displacing brine, and the matrix flow was negligible. The marginal decreases of acoustic velocity (maximum 1.6% for axial [Formula: see text]) compared with the 11% increase in axial electrical resistivity suggest that in the case of dominant fracture flow within the fractured tight reservoirs, the use of electrical resistivity methods have a clear advantage compared with seismic methods to monitor [Formula: see text] plume. The knowledge learned from such experiments can be useful for monitoring geologic [Formula: see text] storage in which the primary fluid flow conduit is the fracture network.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3