CSEM-regularized seismic velocity inversion: A multiscale, hierarchical workflow for subsalt imaging

Author:

Colombo Daniele1ORCID,Rovetta Diego1,Turkoglu Ersan1

Affiliation:

1. Saudi Aramco, Geophysics Technology, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..

Abstract

Seismic imaging in salt geology is complicated by highly contrasted velocity fields and irregular salt geometries, which cause complex seismic wavefield scattering. Although the imaging challenges can be addressed by advanced imaging algorithms, a fundamental problem remains in the determination of robust velocity fields in high-noise conditions. Conventional migration velocity analysis is often ineffective, and even the most advanced methods for depth-domain velocity analysis, such as full-waveform inversion, require starting from a good initial estimate of the velocity model to converge to a correct result. Nonseismic methods, such as electromagnetics, can help guide the generation of robust velocity models to be used for further processing. Using the multiphysics data acquired in the deepwater section of the Red Sea, we apply a controlled-source electromagnetic (CSEM) resistivity-regularized seismic velocity inversion for enhancing the velocity model in a complex area dominated by nappe-style salt tectonics. The integration is achieved by a rigorous approach of multiscaled inversions looping over model dimensions (1D first, followed by 3D), variable offsets and increasing frequencies, data-driven and interpretation-supported approaches, leading to a hierarchical inversion guided by a parameter sensitivity analysis. The final step of the integration consists of the inversion of seismic traveltimes subject to CSEM model constraints in which a common-structure coupling mechanism is used. Minimization is performed over the seismic data residuals and cross-gradient objective functions without inverting for the resistivity model, which is used as a reference for the seismic inversion (hierarchical approach). Results are demonstrated through depth imaging in which the velocity model derived through CSEM-regularized hierarchical inversion outperforms the results of a seismic-only derived velocity model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3