Fractional integration of seismic wavelets in anelastic media to recover multiscale properties of impedance discontinuities

Author:

Ker Stephan1ORCID,Le Gonidec Yves2

Affiliation:

1. IFREMER, Géosciences Marines, Plouzané, France..

2. Université Rennes 1, Géosciences Rennes, Rennes Cedex, France..

Abstract

Multiscale seismic attributes based on wavelet transform properties have recently been introduced and successfully applied to identify the geometry of a complex seismic reflector in an elastic medium. We extend this quantitative approach to anelastic media where intrinsic attenuation modifies the seismic attributes and thus requires a specific processing to retrieve them properly. The method assumes an attenuation linearly dependent with the seismic wave frequency and a seismic source wavelet approximated with a Gaussian derivative function (GDF). We highlight a quasi-conservation of the Gaussian character of the wavelet during its propagation. We found that this shape can be accurately modeled by a GDF characterized by a fractional integration and a frequency shift of the seismic source, and we establish the relationship between these wavelet parameters and [Formula: see text]. Based on this seismic wavelet modeling, we design a time-varying shaping filter that enables making constant the shape of the wavelet allowing retrieval of the wavelet transform properties. Introduced with a homogeneous step-like reflector, the method is first applied on a thin-bed reflector and then on a more realistic synthetic data set based on an in situ acoustic impedance sequence and a high-resolution seismic source. The results clearly highlight the efficiency of the method in accurately restoring the multiscale seismic attributes of complex seismic reflectors in anelastic media by the use of broadband seismic sources.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3