Efficient uncertainty analysis of the 3D electrical tomography inverse problem

Author:

Fernández-Martínez Juan Luis1ORCID,Fernández-Muñiz Zulima1,Xu Shan2,Cernea Ana1,Sirieix Colette2ORCID,Riss Joëlle2ORCID

Affiliation:

1. University of Oviedo, Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, C. Federico García Lorca 18, 33007 Oviedo, Spain..

2. University de Bordeaux, I2M. France, Bâtiment B18, Allée Geoffroy ST Hilaire, CS 50023, 33615 Pessac, France..

Abstract

We have evaluated the uncertainty analysis of the 3D electrical tomography inverse problem using model reduction via singular-value decomposition and performed sampling of the nonlinear equivalence region via an explorative member of the particle swarm optimization (PSO) family. The procedure begins with the local inversion of the observed data to find a good resistivity model located in the nonlinear equivalence region. Then, the dimensionality is reduced via the spectral decomposition of the 3D geophysical model. Finally, the exploration of the uncertainty space is performed via an exploratory version of PSO (RR-PSO). This sampling methodology does not prejudge where the initial model comes from as long as this model has a geologic meaning. The 3D subsurface conductivity distribution is arranged as a 2D matrix by ordering the conductivity values contained in a given earth section as a column array and stacking parallel sections as columns of the matrix. There are three basic modes of ordering: mode 1 and mode 2, by using vertical sections in two perpendicular directions, and mode 3, by using horizontal sections. The spectral decomposition is then performed using these three 2D modes. Using this approach, it is possible to sample the uncertainty space of the 3D electrical resistivity inverse problem very efficiently. This methodology is intrinsically parallelizable and could be run for different initial models simultaneously. We found the application to a synthetic data set that is well-known in the literature related to this subject, obtaining a set of surviving geophysical models located in the nonlinear equivalence region that can be used to approximate numerically the posterior distribution of the geophysical model parameters (frequentist approach). Based on these models, it is possible to perform the probabilistic segmentation of the inverse solution found, meanwhile answering geophysical questions with its corresponding uncertainty assessment. This methodology has a general character could be applied to any other 3D nonlinear inverse problems by implementing their corresponding forward model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3