Robust time-frequency analysis of seismic data using general linear chirplet transform

Author:

Huang Yucheng1ORCID,Zheng Xiaodong1,Duan Yanting2ORCID,Luan Yi3ORCID

Affiliation:

1. PetroChina, Research Institute of Petroleum Exploration and Development, Beijing, China..

2. Peking University, Institute of Oil & Gas, Beijing, China..

3. Chinese University of Hong Kong, Faculty of Science, Sha Tin, Hong Kong..

Abstract

Time-frequency analysis (TFA) has been widely used in seismic processing and interpretation. A good time-frequency representation can preferably characterize geologic spatial distribution and detect hydrocarbon reservoir anomalies. This paper applies a robust seismic TFA method based on the general linear chirplet transform (GLCT). The GLCT method is an extended form of LCT, which is a unifying framework encompassing the short time Fourier transform (STFT) and the continuous wavelet transform (CWT) using the chirplet atom as the kernel function instead of the sinusoidal wave or wavelets. By rotating the chirplet atom at each time-frequency point, GLCT method could adaptively choose the best atom to fit the local time-frequency feature of seismic signals. The algorithm follows such a simple logic and produces a broadband time-frequency spectrum free of cross-term interference, resulting in good performance characterizing the instantaneous spectral variations. Synthetic data analysis demonstrates that the GLCT method is able to reach a higher energy concentration in the time-frequency plane than conventional methods. Robustness analysis indicates that GLCT produces more stable results that outperform not only STFT, CWT, but also high-resolution methods such as the synchrosqueezing transform and complete ensemble empirical mode decomposition in the case of noisy data. The application to field data illustrates that the isofrequency attributes extracted by GLCT through spectral decomposition could effectively image subtle stratigraphic structures of the subsurface paleotopography and highlight the frequency anomalies associated with hydrocarbons. Sometimes, these anomalies might be otherwise inundated in the background noise. Our method can be a validation tool for seismic facies interpretation improvement and direct hydrocarbon indication in practice.

Funder

National Key Research and Development Program of China

Important National Science and Technology Specific Projects of China

Advanced Technology Research Project of RIPED, Petrochina

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3