Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order

Author:

Ren Zhengyong1ORCID,Zhong Yiyuan2ORCID,Chen Chaojian2ORCID,Tang Jingtian1,Pan Kejia3ORCID

Affiliation:

1. Central South University, School of Geosciences and Info-Physics, Changsha, China; Central South University, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Changsha, China; and Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Changsha, China..

2. Central South University, School of Geosciences and Info-Physics, Changsha, China.

3. Central South University, School of Mathematics and Statistics, Changsha, China.

Abstract

A new singularity-free analytical formula has been developed for the gravity field of arbitrary 3D polyhedral mass bodies with horizontally and vertically varying density contrast using third-order polynomial functions. First, the observation sites are moved to the origin of the coordinate system. Then, the volume and surface integral theorems are invoked successively to transform the volume integrals into surface integrals over polygonal faces and into line integrals over the edges of the polyhedral mass bodies. Furthermore, singularity-free closed-form solutions are derived for these line integrals over the edges. Thus, the observation sites can be located inside, on, or outside the 3D distributions. A synthetic prismatic mass body is adopted to verify the accuracy and singularity-free property of our newly developed analytical expressions. Excellent agreements are obtained between our solutions and other published closed-form solutions with relative errors in the order of [Formula: see text] to [Formula: see text]. In addition, an octahedral model and a near-Earth asteroid model are used to verify the accuracy of the presented method for complicated target structures by comparing the results with those from a high-order Gaussian quadrature approach.

Funder

National Basic Research Program of China

Central South University

National Science Foundation of China

Natural Science Foundation of Hunan Province of China

State High-Tech Development Plan of China

Central Universities of Central South University

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3