A homogenization approach for modeling a propagating hydraulic fracture in a layered material

Author:

Dontsov Egor V.1ORCID

Affiliation:

1. University of Houston, Houston, Texas, USA..

Abstract

Shales are known to have a finely layered structure, which greatly influences the overall material’s response. Incorporating the effect of all these layers explicitly in a hydraulic fracture simulator would require a prohibitively fine mesh. To avoid such a scenario, a suitable homogenization, which would represent the effect of multiple layers in an average sense, should be performed. We consider a sample variation of elastic properties and minimum horizontal stress versus depth that has more than a hundred layers. We evaluate methodologies to homogenize the stress and the elastic properties. The elastic response of a layered material is found to be equivalent to that of a transversely isotropic material, and the explicit relations for the effective parameters are obtained. To illustrate the relevance of the homogenization procedure for hydraulic fracturing, the propagation of a plane strain hydraulic fracture in a finely layered shale is studied. To reduce the complexity of the numerical model, elastic layering is neglected and only the effect of the stress layers is analyzed. The results demonstrate the ability of the homogenized stress model to accurately capture the hydraulic fracture behavior using a relatively coarse mesh. This result is obtained by using a special asymptotic solution at the tip element that accounts for the local stress variation near the tip, which effectively treats the material at the tip element as nonhomogenized.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference28 articles.

1. Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers

2. Solution of Interface Problems by Homogenization. I

3. Long-wave elastic anisotropy produced by horizontal layering

4. Cohen, C., O. Kresse, and X. Weng, 2015, A new stacked height growth model for hydraulic fracturing simulation: Presented at the 49th U.S. Rock Mechanics Symposium, San Francisco, CA, USA, ARMA-2015-073, American Rock Mechanics Association.

5. Boundary Element Methods in Solid Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3