Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography

Author:

al Hagrey Said Attia12,Petersen Torsten12

Affiliation:

1. University of Kiel, Department of Geophysics, Kiel, Germany..

2. Goethe-Schule, Flensburg, Germany..

Abstract

An exact mapping of root zones is essential to understand plant growth, root biomass, and soil functions important for environmental and climatic management and protection. Numerical and experimental techniques of the electrical resistivity tomography were applied in 2D and 3D to resolve small root zones in the centimeter range. Numerically, we studied two scenarios of conductive and resistive root zones as a function of (1) eight different quadripole electrode configurations (standard, nonstandard, and optimized), (2) four different survey designs with electrode arrays at the soil surface and in boreholes, and (3) eight different inversion constraints. The best resolved output tomogram was evaluated semiquantitatively using the criteria of visual similarity to the input model, least data set, rms error, and iteration number and quantitatively by the model difference relative to the input model. The results showed that the surface-borehole configurations have the best resolution for the whole root zone. The single-surface and borehole surveys resolve only the respective upper and middle-lower root parts. The results reflect the potential of the optimization approach to generate small data sets of far higher resolution than the standard sets. Based on these results, we used the surface-borehole survey around a young hibiscus planted in a sandy soil in a laboratory experiment. The surface-borehole surveys using small, optimized configurations result in an optimum spatiotemporal resolution for simultaneous applications for 3D mapping of targets (root zones and water and soil heterogeneities) and 4D monitoring of their processes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3