Interpolation and gridding of aliased geophysical data using constrained anisotropic diffusion to enhance trends

Author:

Smith Richard S.12,O'Connell Michael D.12

Affiliation:

1. Fugro Airborne Surveys, 2060 Walkley Rd., Ottawa, Ontario K1G 3P5, Canada..

2. Consultant, 1679 Laurelwood Place, Ottawa, Ontario K1C 6Y4, Canada..

Abstract

Geophysical data are frequently collected with a fine sample interval along traverse lines but with a coarser sampling in the direction perpendicular to the traverses. This disparity in sampling intervals is particularly evident when magnetic data are collected simultaneously with airborne electromagnetic data. Interpolating this traverse data onto an evenly spaced 2D grid can result in aliasing artifacts. For example, narrow linear structures that trend at acute angles to the traverse lines are imaged as a thick/thin/thick feature, looking like a boudinage or string of beads. Applying the anisotropic diffusion process to the resulting grids of data removes the artifacts, but the grid values close to the traverses are altered significantly from their initial values. The altered values are therefore not faithful to the original traverse data. The anisotropic diffusion algorithm can be modified to constrain values close to the original traverses. This modification removes the aliasing artifacts and produces a data grid faithful to the original traverse data. Some small artifacts along the traverse lines in the final data grid become more evident when grids containing derivative data (such as the analytic signal) are generated from the new data grid. However, these small traverse-line artifacts can be removed with standard microleveling procedures. The constrained anisotropic diffusion process is iterative, and some experimentation is required to determine the appropriate number of iterations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3