Parallel structural interpretation of drill cores and microresistivity scanner images from gas-bearing shale (Baltic Basin, Poland)

Author:

Bobek Kinga1,Jarosiński Marek1

Affiliation:

1. Polish Geological Institute — National Research Institute, Warsaw, Poland..

Abstract

Having access to drill cores and microresistivity scanner images from five shale gas exploration boreholes, we were able to compare the results of structural interpretation based on two data sets. The most frequent structures observed in shale complexes are subvertical strata-bound joints that commonly create calcite veins. We have applied a modified approach for statistical analysis of strata-bound fractures taking into account their height. For comparison of cores and scanner image log structural interpretations, we used the fracture number and fracture intensity parameters. We found significant discrepancies between results of cores and image log interpretations. The much greater number of fractures recognized in the image log than in the core is explained by differences in the observation space related to the core and borehole diameters. To predict which fracture that was visible in the scanner image should be represented in the core, we introduced a “critical angle” parameter and used it in the filtering procedure, which gave satisfactory results. In general, the systematically observed superiority of fracture intensity in the scanner image over the core profile is explained by a large number of tiny noncracked veins that are better recorded by a scanner then are visible by the unaided eye. The most striking difference was found in carbonate-rich formations, in which noncracked veins are more numerous. On the contrary, fracture intensity in intervals enriched in total organic carbon (TOC) is always higher in core than in the scanner image, due to a resistivity enhancement related to gas presence. We also compared a record of en echelon arrays of open fractures that allow us to discriminate enhanced natural fractures from borehole-induced tensile fractures. A major difference in the bedding fracture density between the core and image log we attribute to core relaxation during its extraction to the surface. A tectonic inversion phase was also possible to recognize based on the integrated core and scanner interpretation.

Funder

Polish National Centre for Research and Development

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference31 articles.

1. Estimates of fracture density and uncertainties from well data

2. An Experimental Study of Interaction Between Hydraulically Induced and Pre-Existing Fractures

3. Bobek, K., M. Jarosiński, and R Pachytel, 2017, Tectonic structures in shale that you do not include in your reservoir model: Presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3