Resolution enhancement with relative amplitude preservation for unconventional targets

Author:

Kwietniak Anna1,Cichostępski Kamil1,Pietsch Kaja1

Affiliation:

1. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics, Krakow, Poland..

Abstract

Our primary objective was to evaluate a method that enhances the resolution of 3D seismic data that does not disturb the relative amplitude preservation. The formations that are the subject of the analysis are Lower Silurian: the Jantar Formation and the Ordovician Sasino Formation (the onshore part of the Baltic Basin, northern Poland). Both formations are seismically thin layers and have been recent targets for unconventional exploration. Resolution enhancement designed to help the structural interpretation may enable precise structural interpretation of thinly layered intervals. The method that we applied is poststack spectral blueing. To verify the effectiveness of the spectral blueing procedure, we designed an algorithm that compares the amplitude values along evenly distributed seismic traces. The algorithm addresses the preservation of the relative amplitude ratio. We did not want to disturb the amplitude values by the enhancement algorithm and introduce information that would be false for seismic inversion analysis. Hence, it was crucial for us to obtain the enhanced seismic volume suitable for structural interpretation that holds relative amplitude relation criterion. The algorithm helped obtain the optimal enhanced seismic volume that is preferable for the structural interpretation of seismic data and possibly could be used successfully for a seismic inversion process. With the optimal enhanced seismic volume, we were able to conduct a more accurate structural interpretation — an entirely new seismic horizon that indicates that the top of one of the formations under analysis was clearly visible and thus possible for interpretation. We applied the acoustic inversion to the original and the enhanced seismic data — the latter enabled the determination of two additional anomalous zones that had not been previously possible to distinguish within the seismic volume.

Funder

NCBiR

AGH

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3