Pitfalls in near-surface geophysical interpretation: Challenging paradigms and misconceptions

Author:

Nobes David C.1,Atekwana Estella2

Affiliation:

1. East China University of Technology, School of Geophysics and Measurement-Control Technology, Nanchang, China..

2. Formerly Oklahoma State University, Boone Pickens School of Geology, Stillwater, Oklahoma, USA; presently Department of Geological Sciences, University of Delaware, College of Earth, Ocean, and Environment, Newark, Delaware, USA..

Abstract

Too often, ideas become so well-established that they take on the roles of paradigms, and challenging those paradigms can be difficult, even if they are flawed. Similarly, misconceptions can take root and become firmly entrenched and again are difficult to dislodge. Both of these situations are fundamentally unscientific. Science makes progress when established theories are shown to be incorrect or at least incomplete. To do that, we have to let the data that we collect tell their stories. We should not impose models upon the data, but rather allow the data to yield those models that best represent those features that are absolutely necessary to fit the data, an approach often called “Occam’s inversion.” We also should not impose nonphysical and unscientific limits on our interpretation models. We evaluate several examples from our own experiences: the electrical properties of faults, nonuniqueness in potential fields, the influence of nonaqueous phase liquids and water on ground-penetrating radar and electrical resistivity, and the geophysical response of seafloor mineralization. In each case, a reviewer or another scientist questioned the conclusions using unscientific or incorrect arguments or assumptions. We must let the data speak.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3