Target-oriented diversity stacking for virtual-source imaging and monitoring

Author:

Zhao Yang1,Zhang Houzhu1,Liu Hongwei2,Zhang Dongliang2,Sengupta Madhumita1

Affiliation:

1. Aramco Services Company, Aramco Research Center, Houston, Texas, USA..

2. Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..

Abstract

Interferometric virtual-source (VS) redatuming crosscorrelates downgoing waves with the corresponding upgoing waves to convert records from surface-source gathers to virtual gathers at the buried receiver locations. It can be viewed as the cancellation of common parts of the raypaths from surface sources to different buried receivers. As part of this process, a stacking operator — a uniform or simple offset function — is applied to weight and sum the surface-source array to form the VS. The stacking operator should preserve sources associated with effective cancellations of common raypaths and suppress ineffectively cancelling sources. The VS records should show reduced effects of overburden complexity, therefore providing improved image quality as well as improved repeatability in time-lapse monitoring. However, complex near-surface effects such as intricate shallow structures and variable weathering layers can severely distort the raypaths. As a result, sources associated with ineffective-raypath cancellation can produce substantial artifacts, instead of being spatially suppressed by the conventional stacking operator. To address these issues, we propose a data-driven VS method with a diversity-stacking theme in which each individual source contribution is weighted by certain quality measures. Specifically, we predict the upgoing wavefields using the conventional VS response and use the quality of these predictions compared with the original upgoing wavefields to approximate the weight of each source for the diversity stacking. Compared with previous methods, the new VS approach provides improved image quality and repeatability based on a pilot field of 13 time-lapse surveys, which reduced a significant repeatability problem across a 17-month survey gap.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3