STRUCTURE INDEPENDENT VELOCITY ESTIMATION

Author:

Doherty Stephen M.1,Claerbout Jon F.2

Affiliation:

1. Stanford University, Stanford, California

2. Stanford University, Stanford, California 94305

Abstract

Many commonly used velocity estimation procedures assume that the reflectors are horizontal. Because of this, their performance tends to degrade as the reflectors become curved or discontinuous. Much of this degradation can be traced to the fact that data recorded over nonhorizontal reflectors need not resemble in detail the subsurface in the area where they were recorded. Diffraction and scattering are the major complicating factors. Beginning with the scalar wave equation and using a small dip assumption, approximate wave equations which quite accurately model both near‐ and wide‐angle reflections generated by one or more sources can be found. Finite difference formulations of these equations can be used to demonstrate that surface recorded seismic reflections which have been downward continued to the depth of their source reflectors must resemble those reflectors in detail. This property of downward continuation can be exploited to improve velocity estimates by using downward continuation as a preprocessor for velocity estimation techniques. Both synthetic and field data examples show that estimates based on downward continued data do not exhibit diffraction effects and are not dependent upon reflector dip. Synthetic data examples also illustrate that the use of downward continuation allows accurate velocity estimates to be made from no record data recorded over an earth in which the reflectors are random functions of the horizontal and vertical coordinates. For reasonable data parameters, theoretical considerations indicate that the coherence of properly downward continued random reflector data measured along the true velocity hyperbolic should be greater than a similar measure on the corresponding surface data. This coherence increase should make velocity estimates based on downward continued random reflector data less susceptible to noise than estimates based on surface recorded data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3