Affiliation:
1. Department of Geological Sciences, The University of Texas at Austin, P.O. Box 7909, Austin, TX 78713-7909
Abstract
A practical approach to linear prestack seismic inversion in the context of a locally 1-D earth is employed to use amplitude variation with offset (AVO) information for the direct detection in hydrocarbons. The inversion is based on the three‐term linearized approximation to the Zoeppritz equations. The normal‐incidence compressional‐wave reflection coefficient [Formula: see text] models the background reflectivity in the absence of hydrocarbons and incorporates the mudrock curve and Gardner’s equation. Prediction‐error parameters, [Formula: see text] and [Formula: see text], represent perturbations in the normal‐incidence shear‐wave reflection coefficient and the density contribution to the normal incidence reflectivity, respectively, from that predicted by the mudrock curve and Gardner’s equation. This prediction‐error approach can detect hydrocarbons in the absence of an overall increase in AVO, and in the absence of bright spots, as expected in theory. Linear inversion is applied to a portion of a young, Tertiary, shallow‐marine data set that contains known hydrocarbon accumulations. Prestack data are in the form of angle stack, or constant offset‐to‐depth ratio, gathers. Prestack synthetic seismograms are obtained by primaries‐only ray tracing using the linearized approximation to the Zoeppritz equations to model the reflection amplitudes. Where the a priori assumptions hold, the data are reproduced with a single parameter [Formula: see text]. Hydrocarbons are detected as low impedance relative to the surrounding shales and the downdip brine‐filled reservoir on [Formula: see text], also as positive perturbations (opposite polarity relative to [Formula: see text]) on [Formula: see text] and [Formula: see text]. The maximum perturbation in [Formula: see text] from the normal‐incidence shear‐wave reflection coefficient predicted by the a priori assumptions is 0.08. Hydrocarbon detection is achieved, although the overall seismic response of a gas‐filled thin layer shows a decrease in amplitude with offset (angle). The angle‐stack data (70 prestack ensembles, 0.504–1.936 s time range) are reproduced with a data residual that is 7 dB down. Reflectivity‐based prestack seismograms properly model a gas/water contact as a strong increase in AVO and a gas‐filled thin layer as a decrease in AVO.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献