SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED

Author:

Hunt Graham R.1

Affiliation:

1. U.S. Geological Survey, Denver, Colorado 80225

Abstract

The utility of multispectral remote sensing techniques for discriminating among materials is based on the differences that exist among their spectral properties. As distinct from spectral variations that occur as a consequence of target condition and environmental factors, intrinsic spectral features that appear in the form of bands and slopes in the visible and near infrared (.325 to 2.5 μm) bidirectional reflection spectra of minerals (and, consequently, rocks) are caused by a variety of electronic and vibrational processes. These processes, such as crystal field effects, charge‐transfer, color centers, transitions to the conduction band, and overtone and combination tone vibrational transitions are discussed and illustrated with reference to specific minerals. Spectral data collected from a large selection of minerals are used to generate a “spectral signature” diagram that summarizes the optimum intrinsic information available from the spectra of particulate minerals. The diagram provides a ready reference for the interpretation of visible and near infrared features that typically appear in remotely sensed data. In the visible‐near infrared region, the most commonly observed features in naturally occurring materials are due to the presence of iron in some form or other, or to the presence of water or OH groups.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3