Detection of subsurface soil cracks by vertical anisotropy profiles of apparent electrical resistivity

Author:

Greve Anna K.12,Acworth R. Ian12,Kelly Bryce F.12

Affiliation:

1. University of New South Wales, Connected Waters Initiative, Water Research Laboratory, Sydney, Australia. .

2. University of New South Wales, Connected Waters Initiative, School of Biological Earth and Environmental Sciences, Sydney, Australia. .

Abstract

To date, an understanding of crack dynamics has been fundamentally hampered by the lack of available techniques to observe or monitor crack dynamics below the soil surface. A new technique relates the growth of soil cracks to a progressive increase in the electrical anisotropy of the soil. Although a single measurement of anisotropy is possible using a surface array of electrodes, the use of four strings of electrodes installed vertically at the corners of a square provides a valuable picture of the crack pattern at depth. In addition, time-lapse electrical surveys allow the growth of cracks to be clearly monitored. The electrical anisotropy is defined as the ratio of the [Formula: see text]-to-[Formula: see text] apparent resistivity for the square array and is determined for each coplanar set of four electrodesusing one electrode from each of the four vertical strings. In a laboratory, we measured the electrical anisotropy in a sand-filled lysimeter with a plastic sheet, introduced to represent an electrically insulating crack. Measurements were then repeated in a cracking-soil-filled lysimeter. Finally, measurements were made in a field where a flood-irrigated sorghum crop was grown on cracking soil. Measurements under all three conditions demonstrate that the lateral and vertical extents of cracking in a soil profile strongly influence the electrical anisotropy. The larger the cumulative cracking volume, the higher the electrical anisotropy. Soil-moisture changes after crack closure have a minor influence on the measured anisotropy, as have sorghum roots. These experiments demonstrate that electrical-anisotropy profiles are a valuable tool for monitoring crack dynamics within a soil profile.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3