Affiliation:
1. Southwest Research Institute, Applied Physics Division, 6220 Culebra Road, San Antonio, Texas 78238. Emails:
Abstract
Most methods for deriving Q from surface‐seismic data depend on the spectral content of the reflection. The spectrum of the reflected wave may be affected by the presence of thin beds in the formation, which makes Q estimates less reliable. We incorporate a method for correcting the reflected spectrum to remove local thin‐bed effects into the Q‐versus‐offset (QVO) method for determining attenuation from seismic‐reflection data. By dividing the observed spectrum by the local spectrum of the known reflectivity sequence from a nearby well log, we obtain a spectrum more closely resembling that which would be produced by a single primary reflector. This operation, equivalent to deconvolution in the time domain, is demonstrated to be successful using synthetic data. As a test case, we also apply the correction method to QVO with a real seismic line over a south Florida site containing many thin sandstone and carbonate beds. When corrected spectra are used, there is significantly less variance in the estimated Q values, and fewer unphysical negative Q values are obtained. Based on this method, it appears that sediments at the Florida site have a Q near 33 that is roughly constant from 170‐ to 600‐m depth over the length of the line.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献