A PRACTICAL APPROACH TO FINITE‐DIFFERENCE RESISTIVITY MODELING

Author:

Mufti Irshad R.1

Affiliation:

1. Amoco Production Co., Research Center, Box 591, Tulsa, OK 74102

Abstract

Highly efficient finite‐difference resistivity modeling algorithms which yield accurate results are put forward. The given medium is discretized and divided into rectangular blocks by using a very coarse system of vertical and horizontal grid lines, whose distance from the source(s) increases logarithmically. Expressions are derived to compute the longitudinal conductance and transverse resistance associated with each of these blocks for a parallel‐layer medium followed by a generalized treatment to accommodate arbitrarily shaped structures. Since the values of Dar Zarrouk parameters are derived from the exact resistivity distribution of the given medium, fine features such as a thin but anomalously resistive bed which ordinarily would be missed entirely in coarse discretization can be taken into account. Further reduction in the size of the model is achieved by making use of a symmetry wherever possible. In most cases the computation of the potential field which involves the inversion of a small sparse matrix requires about 0.5 sec of computer time. Moreover, changes in geology affect neither the size nor the zero structure of the matrix. Therefore, when more than one model is to be computed, the factorization of the matrix can be done symbolically only once for all models, followed by numeric factorization for each individual model. The coarse grid algorithm was applied to a number of horizontally layered models involving a point source. The results obtained for each model were in excellent agreement with the corresponding analytical data. Finite‐difference investigation of the potential field for two‐dimensional structures and a line source dipole indicates that as long as one is interested only in the evaluation of the Schlumberger‐type apparent resistivity curves, the line‐source results may be a much better approximation to the corresponding point‐source data than is commonly believed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3