A method for computation of velocity profiles by inversion of large‐offset records

Author:

Carrion Philip M.1,Kuo John T.1

Affiliation:

1. Aldridge Laboratory of Applied Geophysics, Henry Krumb School of Mines, Columbia University, New York, NY 10027

Abstract

This paper describes a new method for recovering velocity profiles utilizing both phase and amplitude information including wide‐angle arrivals, post‐ and precritical reflections. This method is based on a double spatial transformation with a minimization procedure. The first transformation is slant stacking of the observed wave field (seismogram). The second is projecting the slant stacked wave field into the domain of horizontal slowness p and depth z. In this domain the inverse problem is reduced to finding the critical path [Formula: see text] where V(z) is the true velocity of the compressional waves. A numerical algorithm based on a minimization technique is used to find the critical path, which is equivalent to the set of turning points of the critically reflected rays. When this path is found, then the following criteria are satisfied: (1) most of the energy is concentrated away from the precritical region; (2) the computed reflection coefficients reach their maximum on this path; and (3) for horizontally stratified media or CMP data, the reflectors are aligned in the p-z domain. In tests, this method has been shown to recover the velocity profile from both synthetic and real data. It is shown that the method is able to recover accurately velocity profiles even if only part of the data are given. For example, only part of the data are available when low‐ and high‐frequency components are missing or when the data are truncated in lateral extent due to the finite length of the recording system. Moreover, the method is able to handle virtually any vertical velocity gradients in a medium; therefore, it can be applied to complicated geologic structures. The method does not require elimination of multiples, but it is not applicable to the case of a medium with a large lateral velocity gradient. It can be used even for an elastic medium when the mode‐converted energy is not small.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Born inversion of seismic reflection data;Geophysical Journal of the Royal Astronomical Society;2010-07-26

2. Non‐stretch stacking in the tau‐p domain: Exploiting long‐offset arrivals for sub‐basalt imaging;SEG Technical Program Expanded Abstracts 2004;2004-01

3. An Efficient Algorithm for Impedance Reconstruction by the Modified Gelfand-Levitan Inverse Method;Theory and Practice of Geophysical Data Inversion;1992

4. Velocity analysis from large offset seismic records;Pure and Applied Geophysics PAGEOPH;1988

5. Inversion of reflection traveltimes and amplitudes;GEOPHYSICS;1987-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3