Effects of surface scattering in full-waveform inversion

Author:

Bleibinhaus Florian12,Rondenay Stéphane12

Affiliation:

1. Formerly Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, U.S.A.; presently University of Salzburg, Geology Department, Salzburg, Austria. .

2. Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, U.S.A. .

Abstract

In full-waveform inversion of seismic body waves, often the free surface is ignored on grounds of computational efficiency. A synthetic study was performed to investigate the effects of this simplification. In terms of size and frequency, the test model and data conform to a real long-offset survey of the upper crust across the San Andreas fault. Random fractal variations are superimposed on a background model with strong lateral and vertical velocity variations ranging from 1200 to 6800 m/s. Synthetic data were computed and inverted for this model and different topographies. A fully viscoelastic time-domain code was used to synthesize the seismograms, and a viscoacoustic frequency-domain code was utilized to invert them. The inversion was focused on early arrivals, which are dominated by P-waves but also contain strong P-Rayleigh wave conversions from the near-field of the receiver. Resulting waveform models show artifacts and a loss of resolution from neglecting the free surface in the inversion, but the inversions are stable, and they still improve the resolution of kinematic models. The extent of deterioration depends more on the subsurface than on the surface structure. Inversion results were improved at no additional expense by introducing a weak contrast along a staircase function above shots and receivers.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3