Tomographic reconstruction of near‐borehole slowness using refracted borehole sonic arrivals

Author:

Hornby Brian E.1

Affiliation:

1. Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, England

Abstract

Two‐dimensional (2-D) reconstructions of the near‐borehole slowness field are computed using arrival times of refracted borehole sonic arrivals. First‐arrival traveltimes, derived from both computer simulations and field data from full‐waveform sonic tools, were inverted for the near‐borehole formation slowness both axially along the borehole and radially away from the borehole. The inversion is nonlinear; the solution is obtained by means of a series of linear inversions followed by provisional ray tracings. Each iteration involves the application of a tomographic reconstruction algorithm similar to those used in seismic crosswell tomography or medical imaging applications. The technique was demonstrated using ray‐theoretic examples to simulate radial variations in slowness. In addition, full‐waveforms were generated using two‐and‐a‐half‐dimensional (2.5-D) FDM computer models. The finite‐difference method (FDM) computer models were used to test the validity of the ray‐theoretic approximation used in the inversion scheme and to simulate the full‐waveform sonic tool response for both radial and axial changes in formation properties. Field data examples highlighted radial changes in formation slowness caused by two separate mechanisms: water take up by swelling shales and the mechanical breakdown of the near‐borehole rock resulting from stress relief caused by the drilling process. Finally, refracted sonic arrivals from near‐borehole bed boundaries were identified in a horizontal well setting. Using refractions arriving beyond the headwave, a 2-D map of formation slowness was computed in the reservoir away from the borehole. Interpretation of the slowness map resulted in an estimation of the stand‐off of the horizontal borehole from the reservoir boundary.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3