Solving the 3D acoustic wave equation on generalized structured meshes: A finite-difference time-domain approach

Author:

Shragge Jeffrey1

Affiliation:

1. The University of Western Australia, School of Earth and Environment and School of Physics, Crawley, Western Australia, Australia..

Abstract

The key computational kernel of most advanced 3D seismic imaging and inversion algorithms used in exploration seismology involves calculating solutions of the 3D acoustic wave equation, most commonly with a finite-difference time-domain (FDTD) methodology. Although well suited for regularly sampled rectilinear computational domains, FDTD methods seemingly have limited applicability in scenarios involving irregular 3D domain boundary surfaces and mesh interiors best described by non-Cartesian geometry (e.g., surface topography). Using coordinate mapping relationships and differential geometry, an FDTD approach can be developed for generating solutions to the 3D acoustic wave equation that is applicable to generalized 3D coordinate systems and (quadrilateral-faced hexahedral) structured meshes. The developed numerical implementation is similar to the established Cartesian approaches, save for a necessary introduction of weighted first- and mixed second-order partial-derivative operators that account for spatially varying geometry. The approach was validated on three different types of computational meshes: (1) an “internal boundary” mesh conforming to a dipping water bottom layer, (2) analytic “semiorthogonal cylindrical” coordinates, and (3) analytic semiorthogonal and numerically specified “topographic” coordinate meshes. Impulse response tests and numerical analysis demonstrated the viability of the approach for kernel computations for 3D seismic imaging and inversion experiments for non-Cartesian geometry scenarios.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3