A multiple transmitter and receiver electromagnetic system for improved target detection

Author:

Kolaj Michal1,Smith Richard S.1

Affiliation:

1. Laurentian University, Department of Earth Sciences, Sudbury, Ontario, Canada..

Abstract

We have developed an alternative strategy for the inevitable deeper inductive electromagnetic (EM) exploration, which will be required as shallow deposits are exhausted. Rather than using very large magnetic moment ground loops, measurement stations are repeated using many smaller sized loops with smaller moments. The multiple transmitter data are then weighted and summed into a single high signal-to-noise ratio (S/N) composite transmitter. The composite transmitter can be thought of as a postprocessing method that uses the collected multitransmitter data to construct/simulate a transmitter, which maximizes the coupling to a particular target. The appropriate transmitter weights to use will depend on the target location and geometry, and, as such, different weighting schemes allow for the construction of different composite transmitters, each of which will maximally highlight different targets. We have assumed no prior knowledge of the location and orientation of the exploration targets, and we constructed composite transmitters for each possible location of a discretized subsurface and 324 possible target orientations (dipole embedded within a fully resistive medium). A modified difference of squares and a dipole look-up table was used to assess the fit between each composite transmitter and the suggested target location and orientation. Synthetic studies using conductive plate target(s) embedded within a fully resistive medium found that the target locations and orientations could be accurately determined and that the S/N of the composite transmitter was significantly higher than that of standard fixed-loop ground and airborne surveys. In a ground time-domain EM field test, 23 transmitter positions were used, and a shallow target (conductive dike) could be identified using the developed methodology. The composite transmitter data we produced was considerably easier to interpret and had a larger amplitude than that of any one single transmitter.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference17 articles.

1. Golden, H., T. Herbert, and A. Duncan, 2006, GEOFERRET: A new distributed system for deep-probing TEM surveys: Presented at 76th Annual International Meeting in the Workshop on Uranium Exploration, SEG.

2. A procedure for collecting electromagnetic data using multiple transmitters and receivers capable of deep and focused exploration

3. 6. Time Domain Electromagnetic Prospecting Methods

4. 10. Airborne Electromagnetic Methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3