Removing smearing-effect artifacts in angle-domain common-image gathers from reverse time migration

Author:

Jin Hu1,McMechan George A.2

Affiliation:

1. Formerly The University of Texas at Dallas, Center for Lithospheric Studies, Richardson, Texas, USA; presently BP America, Inc., Houston, Texas, USA..

2. The University of Texas at Dallas, Center for Lithospheric Studies, Richardson, Texas, USA..

Abstract

Local plane-wave decomposition (LPWD) and local shift imaging condition (LSIC) methods for extracting angle-domain common-image gathers (ADCIGs) from prestack reverse time migration are based on the local plane-wave assumption, and both suffer from a trade-off in choosing the local window size. Small windows produce clean ADCIGs, but with low angle resolution, whereas large windows produce noisy ADCIGs, which include smearing-effect artifacts, but with high angle resolution. The cause of the smearing-effect artifacts in LPWD is the crosscorrelation of plane waves obtained by decomposition of the source and receiver wavefronts, at points that do not lie on the source wavefront excitation time trajectory. The cause of the smearing-effect artifacts in LSIC is the decomposition of curved events of offset-domain common-image gathers (ODCIGs) at incorrect depth points at zero offset. These artifacts can occur even if the migration velocity model is correct. Two methods were proposed to remove the artifacts. In the LPWD method, the smearing-effect artifacts were removed by decomposing and crosscorrelating the resulting source and receiver plane waves only at image points and excitation (image) times. In the LSIC method, the artifacts were removed by decomposing curved events in ODCIGs into planar events only at zero-offset target image points. Numerical tests with synthetic data revealed the success of the proposed methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3